boundary value theorem

英 [ˈbaʊndri ˈvæljuː ˈθɪərəm] 美 [ˈbaʊndri ˈvæljuː ˈθiːərəm]

网络  边界值定理; 边(界)值定理

计算机



双语例句

  1. This paper presents a new existence theory for positive solutions to a kind of second-order discrete periodic boundary value problems by employing a fixed point theorem in cones.
    运用锥不动点定理,给出了二阶离散周期边值问题正解的新的存在性定理。
  2. For the Riemann-Hilbert boundary value problems for the first order elliptic systems, we proves the problems solvable under some assumptions by means of generalized analytic function theory, Cauchy integral formula, function theoretic approaches and fixed point theorem;
    对于一阶椭圆型方程组的Riemann-Hilbert边值问题,利用广义解析函数理论、Cauchy积分公式、函数论方法和不动点原理,证明在某些假设条件下所讨论问题的可解性;
  3. We first introduce hyperbolic numbers; hyperbolic complex functions and hyperbolic pseudoregular functions and prove the existence of solutions for first boundary value problems for nonlinear hyperbolic complex equations of second order by Schauder Theorem.
    首先介绍双曲数、双曲复函数及双曲伪正则函数,然后运用Schauder不动点定理证明二阶非线性双曲复方程的第一边值问题存在解。
  4. In this paper we present a new existence theory for single and multiple positive periodic solutions for periodic boundary value problems by applying a well-known fixed point theorem in cones. The conditions in our main theorems can easily be checked in practice.
    研究了二阶微分方程周期边值问题,利用锥不动点定理以及格林函数的正性给出周期边值问题单个和多个正解存在性证明的一种新方法。
  5. Several oscillation criteria are obtained for such boundary value problems by employing Green ′ s theorem and certain second order impulsive differential inequalities with delay.
    利用Green定理和二阶时滞脉冲微分不等式得到了这类边值问题若干振动准则。
  6. This paper study existence of solutions of two and three point boundary value problems for nth-order differential equation, using Green's functions, Schauder's fixed point theorem and the methods of upper and lower solutions.
    利用格林函数,Schauder不动点定理及上下解方法讨论了n阶非线性常微分方程具有全非线性二点和三点边界条件的边值问题解的存在性,并得到了新的结果。
  7. We solve the boundary value problem for Bragg stack by using of Maxwell equations and Bloch theorem. The dispersion relation of the Bragg stack is obtained and the feature of electromagnetic band gap of Bragg stack is discussed.
    基于Maxwell方程和周期结构的Bloch定理,求解Bragg堆中的电磁场边值问题,得到Bragg堆的色散关系,同时讨论了Bragg堆的电磁带隙特征。
  8. In this paper, the author considers the discontinuous initial boundary value problem for the one-dimensional semilinear wave equation originated from semi-bounded string vibration, and proves the global existence theorem of piecewise smooth solutions to this problem by using the method of characteristic.
    考虑来自半有界弦振动的一维半线性波动方程的间断初边值问题,利用特征线法证明了该问题的分片光滑解的全局存在性定理。
  9. The existence of solutions to boundary value problem for ( n, p) integral-differential equations are obtained by using the Schauder fixed point theorem and a relative compact condition of Banach spaces.
    运用Schauder不动点定理和Banach空间中一个相对紧的充要条件,获得了一类(n,p)积分-微分方程边值问题解的存在性。
  10. This paper deals with the initial boundary value problem of nonsteady flow of incompressible non Newtonian fluid. Using monotone operators and Schauder ′ s fixed point theorem, we prove the existence and uniqueness and the regularity of solution.
    讨论不可压缩非牛顿流体非定常流动的初边值问题,应用单调算子和Schauder不动点定理证明了解的存在唯一性与正则性。
  11. In this paper, an investigation is made on the boundary value problem of periodic reaction diffusion equations, and the periodic monotonic convergence theorem is established, by which the global stability of periodic solution can be obtained.
    本文研究了一类周期反应扩散方程的边值问题,建立了周期单调收敛定理,用该定理得到周期解的全局稳定性。
  12. It is discussed that the oscillation of a class of second order nonlinear partial differential equations with continuous distribution delay under Robin and Dirichlet boundary value conditions. The sufficient conditions for the oscillation of solutions of the equation are obtained by using Green's theorem and calculus techniques.
    讨论一类具有连续分布滞量的二阶非线性偏微分方程在Robin,Dirichlet边界条件下解的振动性,利用Green定理及微积分技巧,获得该类方程解振动的充分条件。
  13. The boundary value problems for singular second order differential equations are investigated, and the Weyl spectral theorem relating the addressed problems is generalized and improved.
    对Weyl关于二阶奇异微分方程边值问题谱性质的一个定理进行了推广和改进,使得所讨论的方程形式更一般且结果更详细。
  14. In this paper an existence and uniqueness theorem for non-linear two-point boundary value problem is proved by means of Kantorovich's theorem.
    本文利用康托洛维奇定理证明了非线性两点边值问题的一个存在唯一性定理。
  15. The robustness analysis and synthesis is based on the structured Lp gain singular value. According to the boundary property of the singular value, it is easy to obtain the robust stability theorem.
    基于结构L2增益奇异值进行的鲁棒分析与鲁棒综合,其基本依据是奇异值的边界特性,本文针对奇异值的上界特性给予了证明。
  16. At last we obtain a necessary and sufficient conditions for existence of positive solutions to a class of sublinear impulsive singular boundary value problem by using the theorem which we obtained.
    然后通过构造上下解,得到解的存在性定理;最后利用这些定理得到了半直线上次线性脉冲奇异边值问题正解存在的充分必要条件。
  17. It discusses the inverse problem under the third boundary value condition and parents the existence theorem.
    所讨论的是按第三边值问题确定抛物方程一阶导数系数的反问题,并给出反问题解的存在性定理。
  18. In this paper, a nonlinear singular m-point boundary value problem is considered in Banach space. by using the fixed point theorem in cone, the existence of positive solutions and multiple positive solutions is obtained.
    应用锥拉伸压缩不动点定理在Banach空间中研究一类非线性奇异m-点边值问题,得到正解的存在性结果。
  19. We obtain the method of lower and upper solutions to the impulsive singular boundary value problems using the fixed point theorem and give necessary and suffcient condition for the existence of positive solutions to the impulsive singular boundary value problems of Emden-Fowler equations.
    利用不动点定理得到了带脉冲的奇异边值问题的上解和下解方法,并且给出了带脉冲的Emden-Fowler方程奇异边值问题正解存在的充分必要条件。
  20. The method of upper and lower solutions and the monotone iterative technique are used to study periodic boundary value problems of nonlinear singular systems. It is established the existence theorem on their maximal and minimal solutions.
    应用上下解法和单调迭代技巧讨论了广义非线性系统周期边值问题,建立了其最大解和最小解的存在性定理。
  21. Furthermore, we establish the existence of positive solutions of n-order local and non-local boundary value problems by fixed point theorem.
    进一步利用锥上的不动点原理给出了n阶常微分方程局部边值问题和非局部边值问题的正解的存在性。
  22. This paper is concerned with boundary value problems for differential equations and delay differential equations with p-Laplacian operator, respectively. The existence of positive solutions is given by using Avery-Peterson fixed point theorem and Schauder fixed point theorem, respectively.
    本文研究了带p-Laplacian算子整数阶微分方程、以及带p-Laplacian算子含时滞影响的微分方程边值问题的正解,分别利用Avery-Peterson不动点理论、Schauder不动点理论得到了其正解的存在性。
  23. The Maxwell functions of steady current field are presented. And we give detailed proof to the potential boundary value problems of uniqueness theorem under the three types of boundary conditions.
    为此给出了恒定电流场中的Maxwell方程,对电位边值问题唯一性定理的三类边界条件做出了详尽的证明。
  24. For considering the character of solutions, we concern with a class of p-Laplacian two-point boundary value problem on time scales T. By using symmetry technique and a five functionals fixed-point theorem, we prove that the boundary value problem has at least three positive symmetric solutions.
    为了进一步考虑解的特性,我们借助于对称技巧和五泛函不动点定理,给出了测度链T上一类p-Laplacian两点边值问题至少有三个正对称解的存在性条件。
  25. By constructing corresponding Green function for nonlocal fourth-order boundary value problems and using the properties of Green function and the fixed point theorem, we obtain sufficient conditions for the existence of positive solutions.
    通过构造非局部四阶边值问题相对应的Green函数,运用Green函数的性质和不动点定理得到了存在正解的充分条件。